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ABSTRACT

We study the discreteness of the spectrum of Schrödinger operators which

are defined on a class of radial N-dimensional rooted trees of a finite or

infinite volume, and are subject to a certain mixed boundary condition.

We present a method to estimate their eigenvalues using operators on a

one-dimensional tree. These operators are called width-weighted oper-

ators, since their coefficients depend on the section width or area of the

N-dimensional tree. We show that the spectrum of the width-weighted

operator tends to the spectrum of a one-dimensional limit operator as

the sections width tends to zero. Moreover, the projections to the one-

dimensional tree of eigenfunctions of the N-dimensional Laplace operator

converge to the corresponding eigenfunctions of the one-dimensional limit

operator.
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1. Introduction

Let T1 be a one-dimensional infinite tree. We assume throughout this paper that

T1 is a radial regular tree (see Definition 2.1 and Remark 1.1). For N ≥ 2, we

also consider an ε-inflated tree T ε
N around T1 which is an N -dimensional offset

(or inflation) of T1. See Figure 1 for illustrations of one and two-dimensional

trees.

We prove ε-dependent estimates for the spectrum of the eigenvalue problem

(1.1) Lεu := −∆u+WT ε
N
u = λεu,

subject to the Neumann boundary condition on ∂T ε
N except on the root and the

ends of the tree, where we impose the Dirichlet boundary condition. We assume

that WT ε
N

is a (real) bounded and continuous potential on T ε
N . Specifically, we

show that if T ε
N has a finite radius, then under some further assumptions the

spectrum of Lε is discrete and the eigenvalues of the Schrödinger operators Lε
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Figure 1. An example of one and two dimensional trees.

A. One-dimensional tree. B. Two-dimensional tree presented

in R2. Some of its triangle connectors and rectangle edges are

emphasized.

satisfy λε
i → µi as ε→ 0, where µi are the eigenvalues of the following weighted

Schrödinger operator on T1

(1.2) Lu := −1

ρ
(ρu′)′ +WT1

u = µiu.

Here ρ > 0 is a weight function on T1 defined in terms of the inflation T ε
N , and

WT1
is the cross section average of WT ε

N
.

The spectral behavior of the Neumann Laplacian and Schrödinger operators

on thin domains has been extensively investigated. Indeed, in [22], Rubin-

stein and Schatzman studied the relation between the spectral properties of the

Laplace operator defined on a metric graph G and on a strip shaped domain Gε

of width ε around G. The results of [22] on the spectrum of the Laplacian can-

not be applied to our trees because of the following essential differences between

the problems:

(1) Rubinstein and Schatzman treat the case in which the graph G has a

finite number of vertices, while our tree T1 has an infinite number of

vertices.

(2) They consider graph-surrounding domains having a constant (uniform)

width. In the case of an infinite trees, the discreteness of the spectrum

imposes that the width of higher branches of the tree must be scaled.

(3) In particular, the inflated finite graph is of a finite volume, while our

inflated infinite tree may have an infinite volume.
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In [9], Kuchment and Zeng extended the results in [22]. For example, the con-

ditions on the smoothness of the boundary of the domain near the vertices were

relaxed and the constant width of the surrounding domain was not assumed.

Since T1 in our case is an infinite tree, the results of [9, 22] do not apply in

our setting. Nevertheless, we were able to modify the approach in [22] to obtain

similar results in the infinite case. In particular, we could not compare directly

the eigenvalue λε
i to µi. Instead, we find it more convenient to compare the

spectra of −∆ + WT ε
N

on T ε
N to the Schrödinger operator on T1 subjected to

a pair of ε−dependent weight functions ρ1,ε, ρ2,ε, satisfying ρ1,ε, ρ2,ε → ρ as

ε→ 0, and an ε-dependent potential WT1,ε. We, therefore, replace (1.2) by

Lεu := − 1

ρ2,ε
(ρ1,εu

′)′ +WT1
u = µε

iu ,

and prove that λε
i is approximated, on the one hand, by µε

i while the latter is

approximated by µi for ε small.

Spectral properties of Schrödinger operators defined on infinite one-dimensi-

onal metric trees and graphs have also been intensively studied. In [4], Carlson

shows that if G is a connected metric graph which has a finite total edges length

(a finite volume), then the Laplacian defined on G has a compact resolvent and

therefore a discrete spectrum. Solomyak and Naimark have developed general

tools for studying spectral properties of Schrödinger operators on metric graphs

and trees (see, for example, [14, 15, 23, 24]). In [23], Solomyak has proved that

if T1 is a regular tree whose radius is finite, and if WT1
(x) is a radial measurable

real valued function which is bounded below, then the spectrum of L is discrete.

Solomyak’s result is stated for trees of uniform weight function ρ and its proof

relies on the monotonicity of g, where g(t) is the number of branches which

contain points of distance t from the root. In fact, to adjust Solomyak’s proof

for our case, one needs to assume only that gρ is a monotone nondecreasing.

If ρ is constant then it is a natural assumption, but if ρ(t) is decreasing (as in

our case), this monotonicity may be violated. So, we extend this result under

a milder condition on gρ.

We prove the discreteness of the spectrum of Schrödinger operators on regu-

lar N -dimensional trees with infinite volume, as long as the tree radius is finite.

Our proof relies on a lemma of Lewis [11, Lemma 1]. The proof of the discrete-

ness in the N -dimensional case can be applied also to show that the L2-norm
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of functions which are bounded in H1
0 (T ε

N ) does not accumulate at the tree

connectors or ends.

A natural question emerging from the correspondence between the eigenval-

ues of N -dimensional Laplace operator, and one-dimensional width-weighted

operators, is whether the corresponding eigenfunctions present the same con-

vergence behavior. In [7, 8], Kosugi has proved that solutions of (semilinear)

elliptic equations on finite N -dimensional trees indeed converge as the width

tends to zero to solutions of width-weighted equations. We present a different

method and prove that certain projections of eigenfunctions of the Laplace op-

erator on T ε
N converge to the corresponding eigenfunctions on T1. In contrast to

[7, 8], we treat infinite trees rather than trees with a finite number of vertices.

In addition, our assumptions on the smoothness of the connectors are much

weaker than those in [7, 8], and in fact, we require only that the connectors

have a Lipschitz boundary.

Remark 1.1: Our method applies to more general setting. But to facilitate the

presentation, we restrict our study in the present paper to the case where T1 is

a radial regular metric tree (see Definition 2.1), and the inflated N -dimensional

tree is a radial tree with ‘cylindrical’ edges.

We wish to mention three more articles which study the spectrum of thin

domains. In [10], Kuchment and Zeng studied the dependence of the spectrum

of the Neumann Laplacian on the behavior of the surrounding thin domain near

the vertices. They found differential operators on the graph which correspond

to the case in which the neighborhoods of the vertices are much larger or much

smaller than the tubes connecting them.

In [5], Evans and Saito proved results about the connection between the

essential spectrum of the Neumann Laplacian on thin domains surrounding trees

and the essential spectrum of their skeletons. They apply their results on horns,

spirals, “rooms and passages” domains and domains with fractal boundaries.

In our case the essential spectrum is empty, as was mentioned above.

Finally, the referee of the present paper kindly drew our attention to a recent

paper by Post [18]. In this paper the author considers a family of noncompact

manifolds Xε (graph-like manifolds) approaching a noncompact metric graph

X0. Under some uniformity assumptions, convergence results of the related

natural operators, namely the (Neumann) Laplacian ∆Xε
and the generalized

Neumann (Kirchhoff) Laplacian ∆X0
on the metric graph are established. In
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particular, the norm convergence of the resolvents, spectral projections and

eigenfunctions are proved. As a consequence, the essential and the discrete

spectrum converge as well.

The motivation for our problem is that fractal structures, and in particular,

fractal tree-like structures, have a vast applications range. For example, fractal

geometry is used in order to form antennas, which present a multi-band behavior

(see [1, 20]). In [19], Puente et al. state that fractal tree shaped antennas have a

denser band distribution than previously reported Sierpinski fractal antennas.

Estimating the eigenvalues of the Laplace operator defined on such domains

may help in specifying the natural transmission frequencies for the antennas.

Another applications field for fractal geometry is medical modelling. Nelson

et al. mention in [17] that fractal models can be applied to human lungs, vascular

tree, neural networks, urinary ducts, brain folds and cardiac conduction fibers.

Fractal models of human lungs can be found also in [12, 16, 25].

The outline of this article is as follows. In Section 2, we present the basic

notations we use, describe the class of trees we are interested in, and define the

operators on the trees. Section 3 is devoted to the study of the behavior of

H1-functions near the vertices. In Section 4, we prove the discreteness of the

spectrum of Schrödinger operators on T1 and TN . The convergence (as ε→ 0)

of the spectrum of {Lε}, the operator sequence defined on T1, to the spectrum

of the limit operator L is proved in Section 5.

In sections 6.1.1 and 6.1.2 we define transformations between H1
0 (TN ) and

H1
0,ρ2

(T1) and prove comparison theorems for the Rayleigh quotients of the

one and N -dimensional operators. In Section 6.2, we use these comparison

theorems to characterize the behavior of the spectrum on TN . Finally, the

convergence of projections of N -dimensional eigenfunctions of Laplace operator

to eigenfunctions of the one-dimensional width-weighted operators is proved in

Section 7.

2. Preliminaries

2.1. General notations.

(1) Throughout the article, c, c1, c2, . . . and C denote constants, whose ex-

act values are irrelevant, and may change from line to line.

(2) Let {aj} and {bj} be positive sequences. We denote aj ≍ bj , if there

exists a constant c > 0 such that c−1 ≤ aj/bj ≤ c for all j ∈ N. We use
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a similar notation for positive functions, i.e., we denote f ≍ g, if there

exists a constant c > 0 such that c−1 ≤ f(x)/g(x) ≤ c for all x in the

domain of the functions f and g.

(3) For a domain Ω ⊂ RN , we denote by |Ω| its volume in RN .

2.2. The tree T1.

(1) T1 is a one-dimensional connected rooted metric tree. It contains an

infinite number of vertices v, connected by edges e.

(2) The root O of T1 is a distinguished (and unique) vertex. Its generation

number is defined to be zero.

(3) A vertex of T1 is of generation j if it is connected to the root by a

succession of j edges. The generation of a given vertex v is denoted by

gen(v).

(4) Likewise, e is an edge of generation j if it connects a pair of vertices of

generations j and j+1, respectively. The generation number of a given

edge e is denoted by gen(e).

(5) The Euclidian length of an edge e is denoted by |e|.
(6) The branching number of a vertex v is denoted by k(v). It is the

number of edges connecting v to the vertices of generation gen(v) + 1.

(7) The set of all edges meeting at a vertex v is N (v). There are exactly

k(v) + 1 edges in N (v).

(8) The distance dist(x, y) between x, y ∈ T1 is the Euclidian length of the

shortest path on T1 connecting x to y. We denote |x| := dist{O, x}.
(9) g(t) is the counting function of T1, namely, g(t) is the number of

edges which contain a point x ∈ T1 with |x| = t.

(10) R(T1) := supx∈T1
|x| is the radius of T1. L(T1) :=

∑
e∈T1

|e| is the

length of T1.

Definition 2.1: T1 is called radial if the length |e| of each edge e and the branch-

ing number k(v) of each vertex v depend only on gen(e) and gen(v), respectively.

A radial tree is called regular if k(v) = k for any vertex v 6= O, where k is a

constant (so, the branching number is independent of the generation).

Assumption 2.2: Throughout the paper, we assume that T1 is a radial regular

tree (see Remark 1.1).
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2.3. The ε-inflated N-dimensional tree. The tree T1 defined above is, in

fact, a combinatorial object, but we always treat it as a metric tree or quantum

graph. We shall now describe a way to construct an N -dimensional noncompact

manifold T ε
N with a Lipschitz boundary (except at the tree’s ends) which is an

ε-inflation of T1.

(1) A Lipschitz domain Ω ⊂ RN−1 is given. It corresponds to the (scaled)

cross section of the edges. We take the origin of RN−1 to be an interior

point of Ω, called the center of Ω.

(2) A Lipschitz domain V ⊂ RN is given. It corresponds to the (inflated)

vertices. We take the origin of RN to be an interior point of V , called

the center of V . For δ > 0, the notation δΩ stands for the scaled

domain δΩ := {δx : x ∈ Ω}. Similarly δV := {δx : x ∈ V }.
(3) Fix 0 < δ < 1, this number is the (widthwise) contraction factor

along the N -dimensional tree (see also (9) below). By ε > 0, we denote

an independent inflation parameter of the N -dimensional tree.

(4) We assume that the boundary of V contains k+1 disjoint (flat) sections:

One of these sections is an isometric image of Ω, denoted by S0. The

other k sections are isometric images of δΩ, and denoted by S1, . . . , Sk.

(5) The orthogonal projections of the center of V into S0 and Sj ⊂ ∂V for

1 ≤ j ≤ k coincide with the isometric image of the centers of Ω and δΩ,

respectively.

Finally, we define the inflated tree T ε
N of dimension N ≥ 2. For illustrative

purpose, we may consider a certain embedding of T1 into Rm, where m ≥ N .

The embedding of T1 and T ε
N into Rm aims to prevent overlapping of the tree’s

parts. However, such an embedding is nonessential, and the inflated tree T ε
N

should be considered as an N -dimensional manifold.

As we explain below, our tree T ε
N is determined by T1, the choice of the

inflated vertex V , the fixed (widthwise) contraction factor δ along the tree, and

the independent inflation parameter ε > 0.

(6) For each vertex v in the embedded tree T1, the inflated vertex is an

isometric image of V ε(v) := εδgen(v)V whose center coincides with v.

(7) Each edge e ∈ N (v) is perpendicular to Sε
e(v), where Sε

e(v) is the iso-

metric image of the section of ∂V ε(v) intersecting the edge e.

(8) The skeleton of V ε(v) is V
ε
(v) := V ε(v) ∩ T1.
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Figure 2. Notations of parts of T1 and T ε
3 .

(9) For each edge e of the embedded T1, the inflated edge is

Eε(e) := e× Sε
e(v) \ ∪vV

ε(v) .

Thus, δ is indeed the widthwise (section) contraction factor of TN .

(10) The skeleton of Eε(e) is E
ε
(e) := Eε(e) ∩ T1.

(11) The tree T ε
N is obtained by gluing all the inflated vertices V ε(v) and the

inflated edges Eε(e), where e ∈ N (v), along the corresponding sections

Sε
e(v) in a natural fashion.

An inflated 3-dimensional tree is depicted in Figure 2.

A somewhat degenerated example of an inflated tree is the straightened

tree, which we denote by T̂N . We use T̂N as a canonical representation for TN

in Section 4.2.

Definition 2.3 (The straightened tree): Recall that in general, the inflated tree

T ε
N is determined by T1, the inflated vertex V , the fixed (widthwise) contraction
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Figure 3. The straightened tree, T̂3 for k = 3, N = 3.

factor δ, and the inflation parameter ε. Let ε = 1. For the straightened tree

T̂N , the inflated vertex V̂ is given by the cylinder Ω̂ × (0,−1), together with

the section Ŝ0 := Ω̂ × {0} on the top of V̂ , and k disjoint isometric copies of

(k)−1/N Ω̂ × {−1}, corresponding to the sections Ŝ1, . . . , Ŝk, that cover (with

their boundaries) the base Ω̂ × {−1}. The length of each generation of T̂N is

equal to the length of a corresponding edge of T1, so, T̂N ⊂ Ω̂ × R̂. A three-

dimensional straightened tree is depicted in Figure 3. The above condition

implies that Ω̂ is a box in RN of a certain type which depend on k and N .

Indeed, take a box Ω̂ whose sizes are (1, k1/N, k2/N, . . . , k(N−1)/N), then k copies

of (k)−1/N Ω̂ exactly cover Ω̂. So, for this model the scaling factor δ is determined

by the branching number k. Namely, δ = (k)−1/N . We may of course consider

also other tilings.

Corollary 2.4: The straightened tree T̂N can be parameterized by the cylin-

der Ω̂ × R̂, where R̂ is its radius (see Figure 3).
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2.4. Cross sections and functions on T1 and T ε
N . There is a natural

coordinate system on each of the edges Eε(e) ⊂ T ε
N , namely ~x ∈ Eε(e) ⊂

T ε
N is parameterized as ~x = x = (~s, θ), where ~s is a parameterization of the

corresponding perpendicular section Se in Ω, scaled by εδgen(e), and θ is a

parameterization of e\⋃
v V

ε
(v). We can also use the natural parameterization

of V , scaled by εδgen(v), to describe the coordinate system in the inflated vertex

V ε(v). We always take the center of V ε(v) as the origin 0 ∈ V .

(1) We denote by fe the restriction of a function f on T1 to an edge e. In

most cases we omit this notation and write simply f instead of fe.

(2) The function ρ∗ is defined on T1 by ρ∗e = δ(N−1)gen(e)|Ω|.
(3) Let f be a function on T 1

N . We denote by fε the following rescaling of

f on T ε
N :

fε(~x) = fT ε
N

(~x) :=





f(θ, ~s/ε) ~x = (θ, ~s) ∈ Eε(e),

f(~x/ε) ~x ∈ V ε(v),

(4) The total cross section of TN is defined for t ∈ T1 ⊂ TN as H(t) =

g(t)ρ∗(t), where g is the counting function of the skeleton T1 of TN and

ρ∗ as defined in (2) above.

2.5. Function spaces.

(1) Let ρ > 0 be a measurable (weight) function on T1. Denote

L2,ρ(T1) =

{
f : f is measurable on T1 and

∫

T1

|f |2ρ dθ <∞
}
.

The space L2,ρ(T1) equipped with the inner-product 〈f, g〉ρ :=
∫

T1
fgρ dθ

is a Hilbert space with the induced norm ‖ · ‖L2
ρ(T1).

(2) C1(T1) is the space of continuous functions f on T1, such that fe ∈
C1(e) for each edge e. Let ρ > 0 be a measurable function on T1.

H1
ρ(T1) is the completion of the space

{
f ∈ C1(T1) :

∑

e∈T1

∫

e

(
|(fe)

′|2 + |fe|2
)
ρe dθ <∞

}

with respect to the norm

‖f‖H1
ρ(T1) :=

[ ∑

e∈T1

∫

e

(
|f ′

e|2 + |fe|2
)
ρe dθ

]1/2

.
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(3) H1
0,ρ(T1) is the completion in H1

ρ(T1) of C1
0 (T1). For the weight function

ρ∗, we abbreviate H1
0,∗(T1) := H1

0,ρ∗(T1).

(4) H1(TN ) is the completion of the space

{
f ∈ C1(TN ) :

∫

TN

(
|∇f |2 + |f |2

)
dx <∞

}

with respect to the norm ‖f‖H1(TN ) :=
[ ∫

TN

(
|∇f |2 + |f |2

)
dx

]1/2
.

(5) We say that a function f on TN has a generation-finite support in

TN if there exists a generation j0 such that f = 0 in all generations

j ≥ j0.

(6) H1
0 (TN ) is the completion in H1(TN ) of all functions in C1(TN ) which

satisfy f |O×Ω0
= 0 and have a generation-finite support.

2.6. Laplace and Schrödinger operators on T1 and TN . We define a

family of operators on T1 using the standard definition of operators on T1 (see

[22, 23]).

Let W ∈ L∞(T1) be a bounded real valued potential, and let ρα and ρβ be

positive bounded L1
loc(T1) weight functions, which satisfy ρα ≍ ρβ . In particu-

lar, H1
0,ρα

(T1) and H1
0,ρβ

(T1) are equivalent in the sense that u ∈ H1
0,ρα

(T1) if

and only if u ∈ H1
0,ρβ

(T1), and there exists a constant c > 0 independent of u

such that
1

c
‖u‖H1

0,ρα
(T1) ≤ ‖u‖H1

0,ρβ
(T1) ≤ c‖u‖H1

0,ρα
(T1).

We denote by

E(u, v) :=
∑

e∈T1

∫

e

[ρα

ρβ
(ue)

′(ve)
′ +Wueve

]
ρβ dt

the bilinear form on H1
0,ρβ

(T1) × H1
0,ρβ

(T1). Without loss of generality, we

may assume that E ≥ 0 on C1
0 (T1), so, E is a symmetric and nonnegative

closed bilinear form, andH1
0,ρβ

(T1) is dense in L2
ρβ

(T1). By Friedrichs’ extension

theorem (see e.g. Theorem X.23 in [21]) or the First Representation Theorem

(see Theorem VI.2.1 in [6]), there exists a unique self-adjoint operator Lα,β such

that Dom(Lα,β) ⊆ Dom(E) and E(u, v) = 〈Lα,βu, v〉ρβ
for all u ∈ Dom(Lα,β)

and v ∈ H1
0,ρβ

(T1). By this theorem, the domain of Lα,β is given by:

Dom(Lα,β) = {u ∈ H1
0,ρβ

(T1) : |E(u, v)| ≤ C‖v‖L2
ρβ

(T1) ∀v ∈ H1
0,ρβ

(T1)}
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for some constant C. Moreover, it is well-known (see e.g. [22]) that the domain

of Lα,β is contained in the space of all functions u satisfying the following

Kirchhoff conditions:

(1) u is continuous at the vertices (since H1
0,ρβ

⊂ C(T1) ).

(2)
∑

e∈N (v)(ρα)e(ue(v))
′ = 0 in each vertex v ∈ T1.

We will call operators of this form width-weighted operators, because we

will use them for weights ρα and ρβ which are closely related to the width or

section area of TN . Similar operators are also presented by Evans and Saito

in [5].

Remark 2.5: The domain of the operator Lα,β is clearly dense in H1
0,ρ for ρ = ρα

or ρ = ρβ.

Finally, the Laplace operator on the tree TN is defined by the Friedrichs’

extension of the quadratic form

(2.1) EN (u,w) :=

∫

TN

∇u · ∇w̄ dx,

for u,w in the space H1
0 (TN ) (see the definition of H1

0 (TN) in Section 2.5 (6)).

3. Behavior of functions near the vertices

Here we concentrate on a neighborhood of a vertex (resp., an inflated vertex)

in T1 (resp., T ε
N ). For T1, we shall consider the skeleton V

ε
(v) corresponding to

a vertex v, as defined in Section 2.3 (8). We shall also denote the “canonical”

skeleton, corresponding to ε = 1, by V (v). Occasionally, we shall omit the

reference to a particular vertex v and just denote it as V . The end points of

V (v) are denoted by pe, where e ∈ N (v) (see Figure 2). Recall that ρ∗, as

defined in Section 2.4 (2), is a positive weight function on T1, which is constant

on each edge.

(1) For each edge e ∈ N (v) define a nonnegative function ψ(e) ∈ C1(V )

such that ψ(e)(pe) = 1 and ψ(e)(pẽ) = 0 for ẽ 6= e. We also assume that

(3.1)
∑

e∈N (v)

ψ(e) = 1 on V (v) .

If the skeleton V is scaled by δ > 0, so V → δV :=
{
δθ : θ ∈ V

}
, where

the vertex v is taken as the origin, then ψ(e) is scaled into ψδ
(e)(x) :=

ψ(e)(x/δ) for any x ∈ δV .
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(2) Let V be the “canonical” inflated vertex defined in Section 2.3 (2). We

choose a family of nonnegative functions φ(e) ∈ C1(V )∩C(V̄ ) such that

φ(e)(x) =





1 θ(x) ∈ Se,

0 θ(x) ∈ Sẽ, where ẽ 6= e,

and

(3.2)
∑

e∈N (v)

φ(e) = 1 on V.

Similarly, if V is scaled by δ > 0, so V → δV := {δx : x ∈ V }, where

the center of V is taken as the origin, then φ(e) is scaled into

φδ
(e)(x) := φ(e)(x/δ)

for any x ∈ δV .

(3) Next, define for each V and V̄ the quadratic (k+ 1)× (k+ 1) matrices:

Al,m :=

∫

V

(ψ(l))
′(ψ(m))

′ρ∗ dθ, Al,m :=

∫

V

∇φ(l) · ∇φ(m) dx,

and

Bl,m :=

∫

V

ψ(l)ψ(m)ρ
∗ dθ, Bl,m :=

∫

V

φ(l)φ(m) dx.

(4) Let ~1 :=
(
1/

√
k + 1, . . . , 1/

√
k + 1

)
∈ Rk+1, and for any ~f ∈ Ck+1

denote

(3.3) ~fx~1 := ~f −
(
~f ·~1

)
~1,

where · is the standard inner product in Ck+1.

The following lemma is elementary, but essential for our analysis.

Lemma 3.1: The matrices A and A are nonnegative definite, and B and B are

strictly positive definite. In particular, there exist constants αA > 0, αA > 0,

αB > 0, and αB > 0, such that

(3.4)
1

αA
|~fx~1|2 ≤ ~f · A~f∗ ≤ αA|~fx~1|2, 1

αA
|~fx~1|2 ≤ ~f ·A~f∗ ≤ αA|~fx~1|2

and

(3.5)
1

αB
|~f |2 ≤ ~f ·B~f∗ ≤ αB|~f |2, 1

αB
|~f |2 ≤ ~f · B~f∗ ≤ αB |~f |2

for all ~f ∈ Ck+1, where ~f∗ denotes the complex conjugate of ~f t.
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Proof. The non-negativity (resp. positivity) of A and A (resp. B and B) follows

from the corresponding definitions, while (3.4) and (3.5) follow from (3.1) and

(3.2).

Let us introduce the following functionals on H1(V ):

(3.6) I
V

γ [g] :=

∫

V

(|g′|2 + γ|g|2)ρ∗ dθ for γ = 0, 1,

and for ~f ∈ C
k+1 let us denote:

(3.7) AV ,~f = {g ∈ H1(V ) : g(pe) = fe, e ∈ N (v) }.

Lemma 3.2: Using the notations (3.6) and (3.7), we have for γ = 0, 1 that

J
V

γ [~f ] := inf
g∈A

V , ~f

I
V

γ [g]

is attained by a unique function h, which solves the Dirichlet problem

(3.8) −h′′ + γh = 0 in V ∩ e, h(pe) = fe for all e ∈ N (v),

and satisfies Kirchhoff’s conditions

(3.9)
∑

e∈N (v)

ρ∗eh
′
e(v) = 0.

Proof. The existence of minimizers u for I
V

0 and I
V

1 , which satisfy (3.8) is

standard (see e.g. the proof in [5, Theorem 2, pp. 448–449]).

We need to prove that the minimizer u of I
V

γ satisfies Kirchhoff’s derivatives

condition. To this end, let v ∈ C1
0 (V ) and 0 6= ǫ ∈ R. Since u is a minimizer,

Iγ [u] ≤ Iγ [u+ ǫw], and therefore,
∫

V

(u′w′ + γuw)ρ∗ dθ = 0.

By elliptic regularity u ∈ C2(V ∩ e). Moreover, u is continuous in V . Recall

that ρ∗ is constant on each edge, therefore, −u′′

+ γu = 0 on V ∩ e. Thus,

0 =
∑

e∈N (v)

∫

V ∩e

(u′w′ + γuw)ρ∗ dθ

(3.10)

=
∑

e∈N (v)

ρ∗e(ue)
′we

∣∣∣∣
v

pe

+
∑

e∈N (v)

∫

V ∩e

(−u′′ + γu)wρ∗ dθ = w(v)
∑

e∈N (v)

ρ∗eu
′
e(v).
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The uniqueness of the minimizers of I
V

0 and I
V

1 follows since both are minima

of strictly convex functionals on the underlying domains.

Lemma 3.3: There exist βA > 0 and βB > 0 such that for all δ > 0

(3.11) I
δV

0 [~f ] ≥ δ−1βA|~fx~1|2

and

(3.12) I
δV

1 [~f ] ≥ δ−1βB(|~fx~1|2 + δ2|~f |2).

Proof. In the following, we use the notations introduced in Lemma 3.2, and in

(3.6) and (3.7). Consider the case δ = 1 first. Let {~σe} be the standard basis

vectors in Ck+1, where e ∈ N (v). Let h(e) ∈ H1(V ) be the unique minimizer of

J
V

γ [ ~σe]. By Lemma 3.2 it follows that

J
V

γ [~f ] = I
V

γ

[ ∑

e∈N (v)

feh(e)

]
=

∑

e,ẽ∈N (v)

fefẽ

∫

V

[
h′(e)h

′
(ẽ) + γh(e)h(ẽ)

]
ρ∗ dθ,

where each h(e) satisfies

−h′′(e) + γh(e) = 0 in V , h(e)(pe) = 1, h(e)(pẽ) = 0 for all ẽ 6= e.

Let γ = 0. By Lemma 3.2, J0[~f ] is attained uniquely by the harmonic function h

which solves the corresponding Dirichlet problem (and satisfies Kirchhoff’s con-

ditions). In particular, it depends only on ~f and the domain V . Since each so-

lution h satisfying h(pe) = fe can be presented uniquely by h =
∑

e∈N (v) feh(e),

it follows that J0[f ] is a bilinear form. Clearly, it is a nonnegative k+1 dimen-

sional form whose kernel contains only constant multiplicities of ~1 for which the

unique solution of the Dirichlet problem is constant. Therefore, it is equivalent

to all nonnegative forms with such a kernel, and in particular, to |~fx~1|2.
The proof for the case γ = 1 is similar except for replacing the Laplace

operator by the operator −d2/dθ2 + 1 and |~fx~1|2 by |~f |2.
Now, if δ < 1 and γ = 0 we observe that the harmonic minimizers h(e) are

scaled into h(e)(·/δ), and

∫

δV

h′(e)(·/δ)h′(ẽ)(·/δ)ρ∗ dθ = δ−1

∫

V

h′(e)h
′
(ẽ)ρ

∗ dθ.

For δ < 1 and γ = 1, we use similar scaling argument to obtain (3.12).
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We wish to prove now the analog of Lemma 3.3 for the N -dimensional case.

Consider the functionals

(3.13) Iγ [g] :=

∫

V

(|∇g|2 + γ|g|2) dx,

where γ = 0, 1. For all h ∈ H1(V ) and 0 ≤ j ≤ k we denote the average of h

on the section Sj ⊂ ∂V by

(3.14) Pj(h) :=
1

|Sj |

∫

Sj

h ds

(see Section 2.3 (4)). For ~F ∈ Ck+1 we define

(3.15) AV,~F :=
{
g ∈ H1(V ) : Pj(g) = Fj ∀j = 0, . . . , k

}
.

Lemma 3.4: Let ~F ∈ Ck+1. Using the above notations, we have for γ = 0, 1

that

Jγ [~F ] := inf
g∈A

V, ~F

Iγ [g]

is attained by a function h, which is the unique solution of the problem

(3.16) −∆h+ γh = 0 in V, h ∈ AV,~F ,

and satisfies weakly the mixed boundary conditions

(3.17)
∂h

∂n
= 0 on ∂V \

k⋃

j=0

Sj and
∂h

∂n
= κj on Sj ,

where κj for j = 0, . . . , k are uniquely determined constants.

Proof. The proof of (3.16) for the case γ = 1 is standard. Indeed, let {wi}∞1=1

be a minimizing sequence satisfying limi→∞ I1[wi] = J1[~F ]. Then {wi}∞i=1 is

bounded in H1(V ). Therefore, there exists a subsequence {wi} and a function

v ∈ H1(V ) such that wi ⇀ v in H1(V ).

Since Pj(f) is a continuous functional on H1(V ) in the strong topology, it is

also continuous in the weak topology. In particular, AV,~F is closed in the weak

topology of H1(V ) so v ∈ AV,~F . The lower semicontinuity of I1 implies that

I1[v] = J1(~F ). Moreover, v is unique because I1 is convex.

It remains to prove that v satisfies the boundary conditions in (3.17). Since

v is a minimizer in AV,~F , it follows that

0 =

∫

V

(∇v · ∇w + vw) dx =

∫

∂V \∪k
j=0

Sj

w
∂v

∂n
dξ +

∫

∪k
j=0

Sj

w
∂v

∂n
ds,
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for any w ∈ A
V,

−→
0
. The first term in the last expression is thus zero only

if ∂v/∂n = 0 on ∂V \⋃k
j=0 Sj in the weak sense. Since the average of the

test function w is zero on each sector (Pj(w) = 0), the second term is zero if

∂v/∂n = κj (in the weak sense) on Sj . Finally, the multipliers κj are uniquely

determined due to the uniqueness of v for any ~F .

The proof of (3.17) for the case γ = 0 is similar, except that we have to

prove the bound in L2(V ) of the minimizing sequence. Since V is a bounded

Lipschitz domain, by [13, Theorem 5.5.1, and the remark in p. 286], the embed-

ding H1(V ) → L2(V ) is compact. Hence, the spectrum of Helmholtz operator

with the Neumann boundary condition for such domains is discrete. Its first

eigenvalue is 1, and is a simple eigenvalue corresponding to the constant ground

state. Hence, the Poincaré inequality

(3.18)

∫

V

|v|2dx ≤ Λ−1
2

∫

V

|∇v|2dx,

holds for all functions v perpendicular to the constant in H1(V ), where Λ2 is

the second eigenvalue of the Neumann Laplacian on V .

We now repeat the argument for the case γ = 1, but restrict our domain to

the domain of all functions in v ∈ AV,~F which are perpendicular to the constant.

The minimizer u obtained in this way satisfies Pj(u) = Fj + κ for some κ ∈ R

and j ∈ {0, . . . , k}. Then u− κ ∈ AV,~F .

Let now δ > 0, and set δV := {δx : x ∈ V } the scaled inflated vertex, where

we assume (as usual) that the center of V is in the origin. The sections of δV

are scaled accordingly, and we denote them by δSj , 0 ≤ j ≤ k. We define,

correspondingly, the averaging operator on δSj for h ∈ H1(δV ):

(3.19) P δ
j (h) :=

1

δN−1|Sj |

∫

δSj

h ds

and

(3.20) Aδ
V, ~F

:=
{
g ∈ H1(δV ) : P δ

j (g) = Fj ∀j = 0, . . . , k
}
.

Using Lemma 3.4, the following lemma is proved analogously to the proof of

the second part of Lemma 3.3.

Lemma 3.5: There exist βA > 0 and βB > 0 such that for all f ∈ Aδ
V, ~F

(3.21)

∫

δV

|∇f |2 dx ≥ δN−2βA|~Fx~1|2,
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and

(3.22)

∫

δV

(|∇f |2 + |f |2) dx ≥ βB
(
δN−2|~Fx~1|2 + δN |~F |2

)
.

4. Discreteness of the spectrum on T1 and TN

In this section we study the discreteness of the spectrum of width-weighted

operators on T1 and Schrödinger operators on TN .

4.1. Discreteness of the spectrum for weighted operators on T1.

In [4], Carlson has shown that the spectrum of the Laplacian on a connected

metric graph G of finite volume which has a compact completion G is purely

discrete. Solomyak [23] has extended Carlson’s result to regular trees of a finite

radius R.

Theorem 4.1 (Solomyak [23]): Let T1 be a radial tree such thatR(T1) <∞ and

its branching function is uniformly bounded. Let W (x) be a radially symmetric

measurable real valued function which is bounded below. Then the spectrum

of −∆ +W on T1 is purely discrete.

Outline of Solomyak’s proof. Solomyak constructed a family of weighted oper-

ators {AW,v} which are defined on the intervals [tv, R) ⊆ R, where tv is the

distance of a vertex v from the root O. The operators AW,v are defined as the

self adjoint operators in L2
g(tv, R), associated with the quadratic form

(4.1) aW,v[u] :=

∫ R

tv

[
|u′(t)|2 +W (t)|u(t)|2

]
g(t) dt u ∈ C∞

0 (tv, R),

where g is the counting function. Using a decomposition of functions in H(T1)

into symmetric functions on subtrees [15] (which implies the spectral decompo-

sition of the Laplacian to these operators), Solomyak showed the equivalence

between the discreteness of the spectrum of the Laplacian on T1 and the dis-

creteness of the spectrum of AW,v on [tv, R) for all vertices v ∈ T1. Using a

theorem of Birman and Borzov [3] and a certain change of variables, it is then

shown that all the operators AW,v have discrete spectra. The proof of this part

relies on the monotonicity of the counting function g.

The basic ingredient in Solomyak’s proof, namely the spectral decomposition

into the subspaces of functions which are symmetric on subtrees, still holds if

one adds weight functions which are symmetric in generations (see [15, 23] for
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details). The Schrödinger-type operators we consider in this section are defined

on the weighted tree T1 and involve a pair of symmetric weight functions ρα, ρβ

and a symmetric potential W :

(4.2) Lα,βu := −ρ−1
β

d

dt

(
ρα

du

dt

)
+Wu,

The spectral decomposition of Lα,β is obtained by reducing these operators to

the space of functions which are symmetric on all subtrees. The restriction of

Lα,β to the symmetric subtree T1,v with a root v ∈ T1 are obtained by the

quadratic form

(4.3) aα,β,W,v[u] =

∫ R

tv

[
|u′(t)|2ρα +W (t)|u(t)|2ρβ

]
g(t) dt,

and the associated operator in L2([tv, R)) is denoted by Aα,β,W,v. To extend

the result of Solomyak to the weighted tree we should show that Aα,β,W,v has

a discrete spectrum for each vertex v ∈ T1. Even though (4.3) seems very close

to (4.1), the counting function g in (4.1) is replaced by gρα and gρβ in (4.3),

and these functions are not necessarily monotone. We prove the discreteness of

Lα,β under the weaker condition that gρα and gρβ are uniformly bounded from

below.

Theorem 4.2: Let T1 be a one-dimensional tree, whose radius R is finite.

Assume that 0 < ρ < 1 is a symmetric weight function on T1, that ρα ≍ ρ and

ρβ ≍ ρ are symmetric weight functions. Suppose that there exists a constant

C > 0 so that

(4.4) Cg(s)ρ(s) < g(t)ρ(t) for all s ≤ t ≤ R(T1).

Then the spectrum of the width-weighted operator Lα,β on T1 is purely discrete.

We use the following general lemma of Lewis.

Lemma 4.3 ([11, Lemma 1]): Let D be a domain in RN . Let h be a strictly

positive symmetric closed form whose domain Hh(D) is dense in the Hilbert

space L2
w(D) for a positive weight function w on D.

Suppose that D is the union of an increasing sequence of open sets {Dj}, for

which the identity injection ij : Hh(Dj) → L2
w(Dj) is compact. If there is a

positive-valued function p(x) on D and a sequence of positive numbers εj → 0



Vol. 165, 2008 SCHRÖDINGER OPERATORS ON INFINITE TREES 301

as j → ∞ such that

w(x)p(x)−1 < εj for almost every x ∈ D\Dj ,

and

(4.5)

∫

D\Dj

p(x)|u(x)|2dx ≤ h[u, u] for all u ∈ Hh,

then the selfadjoint operator on L2
w(D) associated with the Friedrichs’ extension

of h has a purely discrete spectrum.

Remark 4.4: Lemma 4.3 deals with operators defined on a subspace of L2
w(D),

where D is a domain in RN , but the lemma can be easily extended to manifolds

and trees of the type considered in the present paper. Indeed, we use the lemma

for operators on T1 and T ε
N .

Proof of Theorem 4.2. We only need to show that for any v ∈ T1 the operator

Aα,β,W,v associated with (4.3) has a discrete spectrum. Evidently, it is enough

to show it for v = O. For this, we use Lemma 4.3 with the quadratic form

h = aα,β on L2
ρβ

= L2((0, R), ρβ dt). We set D = [0, R), Dj = [0, tj). We

denote

p(θ) :=
ρ(θ)g(θ)

R(R− |θ|) .

Since 0 < ρ < 1 and gρ satisfies (4.4), it follows that p satisfies the assumptions

of Lemma 4.3. By our assumptions ρα ≍ ρβ ≍ ρ, therefore, it is sufficient to

prove that for all u ∈ C1
0 ([0, R)) and 0 < j < R we have

∫ R

j

p(θ)|u(θ)|2 dθ ≤ C

∫ R

0

|u′(θ)|2ρ(θ)g(θ) dθ.

In fact, for any j < θ < R

|u(θ)|2 =

∣∣∣∣
∫ R

θ

u′(t)dt

∣∣∣∣
2

≤ |R− θ|
∫ R

θ

|u′(t)|2dt.

Then
∫ R

j

p(θ)|u(θ)|2 dθ ≤
∫ R

j

|R− θ|p(θ)
[ ∫ R

θ

|u′(ζ)|2 dζ

]
dθ

≤ 1

R

∫ R

j

[
ρ(θ)g(θ)

∫ R

θ

|u′|2 dζ

]
dθ

≤ C

R

∫ R

j

[∫ R

θ

ρg|u′|2 dζ

]
dθ ≤ C

∫ R

0

ρg|u′|2 dθ .
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4.2. Discreteness of the spectrum for operators on TN . As we have

mentioned, we are interested in spectral properties of Schrödinger operators on

the N -dimensional tree T ε
N . It is well-known that the Laplacian on a compact

manifold with a smooth boundary, and with standard (regular) boundary con-

ditions has a pure point spectrum. However, since we wish to address also the

problem of the discreteness of the spectrum for nonsmooth trees with an infinite

volume, we cannot implement the classical theory. Instead, we use Lemma 4.3

to prove the discreteness of the spectrum of Schrödinger operator on T ε
N with

a finite radius.

First, we introduce the following definition.

Definition 4.5: A function f : TN → Rm is called a piecewise C1-function if f

is continuous on TN , and each generation of TN can be decomposed into finitely

many piecewise C1-subdomains {Ωn}, such that on each closed subdomain Ωn

the function f |Ωn
is C1.

Recall Definition 2.3 of the straightened tree T̂N . By Corollary 2.4, we can

assign T̂N a global coordinate system to the tree, namely (~s, θ), where ~s ∈ Ω̂

and θ ∈ [0, R̂). We pose the following assumption.

Assumptions 4.6: There exists a piecewise C1-diffeomorphism G : TN → T̂N .

We denote by F its inverse, so that, F : T̂N → TN . Denote by J the Jacobian

of F . We assume that there is a constant C > 0 such that

∣∣∣
∂F(~s, θ)

∂θ

∣∣∣ ≤ C ∀(~s, θ) ∈ T̂N ,(4.6)

0 < J(~s, θ1) ≤ CJ(~s, θ2) ∀θ1 ≤ θ2.(4.7)

We have in mind the following two-dimensional example.

Example 4.7: Let T2 be a two-dimensional binary symmetric tree constructed

by gluing rectangles and triangles (see Figure 4). Assume further (for simplifi-

cation) that the length of a rectangle in generation j is rj and its width is dj ,

where r, d ∈ (0, 1). Clearly, T2 can be embedded in R3 to avoid overlapping of

the edges. Notice that such a tree may have an infinite area (though its radius is

finite). Indeed, the area of such a tree is given by
∑∞

j=1[(2dr)
j +βd2j ] for some

constant β, hence for any choice of r < 1, d < 1 such that rd > 1/2, the area

is infinite. Let us denote by Pj the pentagon constructed by gluing a rectangle

and triangle in the j generation, and by Pj,l for l = 1, 2 its partition into two
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Figure 4. The transformation of T2 to T̂2.

symmetric quadrangles. We assume that the coordinates of the vertices of the

quadrangle Pj,l, (x1,a, x2,a) for a = 1, . . . , 4, are given (up to translations) by

(0, 0), (dj , 0), (dj , rj), (0, rj + cdj) respectively for a constant c.

Let p = (R− 1)/R, where R is the radius of the original tree (p is chosen such

that
∑∞

j=0 p
j = R). In particular, r < p < 1. A transformation of a rectangle

whose vertices are at (0, 0), (1/2j, 0), (1/2j, pj), (0, pj) onto Pj,l can be written

in the form

x1(θ, s) = (2d)js and x2(θ, s) =
rj

pj
θ + c

dj

pj
θ − c

2jdj

pj
sθ.

An elementary calculation shows that if d ≤ p, then |∂x2/∂θ| ≤ 1 + c. Note

that ∂x1/∂s = (2d)j is not bounded for d > 1/2, which means that the total

width of the tree is unbounded. However, the condition d > 1/2 ensures the

possibility of gluing together the connectors and the edges of this tree.

Assumptions 4.8: Let V̂ ⊂ Ω̂×(0, 1) be the first inflated vertex of the straight-

ened tree, where Ŝ0 := Ω̂×{0}, Ŝj
∼= k−1/N Ω̂×{1}, 1 ≤ j ≤ k the correspond-

ing sections. Let V be the inflated vertex of a given tree TN , and Sj ⊂ ∂V ,

0 ≤ j ≤ k the corresponding sections. We assume that there exists a piecewise

C1-diffeomorphism F = F(~s, θ) : V̂ → V so that F(Ŝj) = Sj for 0 ≤ j ≤ k,

and such that
∣∣∣
∂F
∂θ

∣∣∣ < C and 0 < J(~s, θ1) ≤ CJ(~s, θ2) if θ1 ≤ θ2

hold on V for some C > 0, where J is the Jacobian of F .
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Remark 4.9: Recall that the connectors (in both trees) are contractions of the

first connector. Moreover, since the inflated edges are always straightened, a

(piecewise) diffeomorphism for the corresponding inflated edges is clearly in-

duced by the (piecewise) diffeomorphism between the corresponding sections

Ŝj
∼= Sj . Hence, Assumptions 4.8 imply Assumptions 4.6. In particular, the

sequence of the lengths of the edges of T1 does not affect Assumptions 4.6.

Theorem 4.10: Under Assumptions 4.6 (resp. Assumptions 4.8), the Laplace

operator on TN as defined in Section 2.6, has a purely discrete spectrum.

Proof. Let G : TN → T̂N be the inverse mapping of F which is defined in

Assumptions 4.6. We assume for simplicity that G is a C1-smooth mapping. As

can be checked easily, the proof below applies also to a piecewise C1-mapping.

Set G(x) := (θ(x), ~s(x)) ∈ T̂N . Denote by J the Jacobian of F . Let T̂N,j ⊂
TN be the finite subtree

T̂N,j := {(θ, ~s) ∈ T̂N : θ < θj},

where θj ր R̂, and R̂ is the radius of T̂N . Let

(4.8) TN,j := F(T̂N,j),

and set

p(x) :=
1

C2R̂|R̂− θ(x)|
.

We wish to use Lemma 4.3 with Dj := TN,j. This lemma requires the compact-

ness of the identity injection ik : H1(Dj) → L2(Dj). Although the boundary

of Dj = TN,j is not C1, this injection is still compact. Indeed, the embedding

i : H1(D) → L2(D) is compact for a bounded domain D which has the (inner)

cone property (see [13, Theorem 5.5.1], and the remark on p. 286 therein).

By Lemma 4.3, it is sufficient to prove for the Laplacian that

(4.9)

∫

T\TN,j

p(x)|u(x)|2dx ≤
∫

TN

|∇u|2dx,

for all u ∈ C1(TN ) that vanish on the ‘top’ of TN and outside TN,j for some

j ≥ 1. Let u be such a test function, and let v(θ, s) = u(x). Then

(4.10) |u(x)|2 = |v(θ, s)|2 =

∣∣∣∣
∫ R̂

θ

∂v

∂ϑ
dϑ

∣∣∣∣
2

≤ |R̂− θ|
∫ R̂

θ

∣∣∣
∂v

∂ϑ

∣∣∣
2

dϑ.
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Using the definition of the function p, (4.6), (4.7), (4.10), and Fubini’s theo-

rem, we obtain,

∫

TN\TN,j

p(x)|u(x)|2dx =

∫

T̂N\T̂N,j

p(θ, s)|v(θ, s)|2Jdξ(4.11)

≤
∫

T̂N\T̂N,j

1

C2R̂

( ∫ R̂

θ

∣∣∣
∂v

∂ϑ

∣∣∣
2

dϑ

)
Jdξ

≤
∫ R̂

θj

∫

Ω̂

1

C2R̂

( ∫ R̂

θ

∣∣∣
∂v

∂ϑ

∣∣∣
2

dϑ

)
J(s, θ)dsdθ

≤
∫ R̂

θj

∫

Ω̂

1

CR̂

( ∫ R̂

θ

∣∣∣
∂v

∂ϑ

∣∣∣
2

J(s, ϑ) dϑ

)
dsdθ

≤ 1

CR̂

∫ R̂

θj

( ∫

Ω̂

∫ R̂

0

∣∣∣
∂v

∂ϑ

∣∣∣
2

J(s, ϑ)dϑds

)
dθ

≤ 1

C

∫

T̂N

∣∣∣
∂v

∂ϑ

∣∣∣
2

Jdξ =
1

C

∫

TN

∣∣∣∣
n∑

i=1

∂u

∂xi

∂xi

∂θ

∣∣∣∣
2

dx

≤
∫

TN

|∇u|2dx.

Since (4.9) is satisfied, the spectrum of the Laplacian on TN is purely

discrete.

Remark 4.11: 1. A similar proof applies for a Schrödinger operator on TN with

a bounded from below potential.

2. It would be very useful to prove the discreteness of the spectrum of Schrö-

dinger operators on TN without using the straightened tree.

4.3. Further results. In this subsection we present two lemmas asserting

that the L2-norm of functions which are bounded in H1
0,ρα

(T1) and in H1
0 (T ε

N )

is concentrated on compact sets. These lemmas will be used in Section 6. Their

proofs are similar to those of Theorems 4.2 and 4.10, and therefore they are

omitted.

Lemma 4.12: Assume that T1 satisfies the assumptions of Theorem 4.2. Sup-

pose that there exists a weight function 0 < ρ < 1, which is constant on

each edge of T1, such that ρ ≍ ρα and ρ ≍ ρβ with a constant c. Denote

T1,j = {gen(e) ≤ j}.
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(1) Let R(j) be the radius of the maximal (connected) subtree in T1\T1,j.

Then
∫

T1\T1,j

|u|2ρβ dθ ≤ c2

C
R(j)2

∫

T1

|u′|2ρα dθ ∀u ∈ H1
0,ρα

(T1).

(2) Let Vε
:=

⋃
v∈T1

V
ε
(v). Then

∫

Vε
|u|2ρβ dθ ≤ O(ε)

∫

T1

|u′|2ρα dθ ∀u ∈ H1
0,ρα

(T1).

Lemma 4.13: Assume that TN satisfies the assumptions of Theorem 4.10.

(1) Let TN,j as defined in (4.8), and let R(j) := R̂ − θj . Then

(4.12)

∫

TN\TN,j

|u(x)|2 dx ≤ C2R(j)2
∫

TN

|∇u|2 dx ∀u ∈ H1
0 (TN ).

(2) Let Vε :=
⋃

v∈T1
V ε(v). Then

(4.13)

∫

Vε

|u(x)|2 dx ≤ O(ε)

∫

T ε
N

|∇u|2 dx ∀u ∈ H1
0 (T ε

N ).

5. Convergence of the spectra of width-weighted operators

In this section we estimate the eigenvalues of the width-weighted operators

on T1 (defined in Section 2.6), for the case where the weight functions and

the potential depend on ε, and pointwise converge as ε tends to 0. We treat

the weight functions and potential term as convergent sequences of functions

of ε. Hence, throughout this section we set ε := 1/n, where n ∈ N, and

denote the weights and potentials by ρα,n, ρβ,n and Wn. Accordingly, the

corresponding operators are denoted by Aα,β,n, or An for short. We assume

that ρα,n and ρβ,n converge to a mutual weight function, which we denote by

ρ. We denote by W the limit potential of the sequence Wn. We also treat

the spaces {H1
0,n(T1)} := {H1

0,ρβ,n
(T1)} as a spaces sequence, with a “limiting

space” H1
0,ρ(T1). Let {L2

n(T1)}∞n=1 and L2
ρ(T1) be the corresponding L2 spaces.

Using this notation, we study the asymptotic behavior of the eigenvalues of An

as n→ ∞.

Throughout this section we assume that the following conditions are satisfied:

Assumptions 5.1: (1) T1 has a finite radius.
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(2) Assumptions on the weight functions: {ρ1,n}∞n=1 and {ρ2,n}∞n=1

are positive bounded weight functions sequences in L1
loc(T1), such that

ρ1,n ≍ ρ and ρ2,n ≍ ρ with the same constant c (so the spaces H1
0,n(T1)

and H1
0,ρ(T1) are equivalent for all n ∈ N). Moreover, for any neigh-

borhood U containing all the vertices of T1 and a given compact set

K ⋐ T1, we have ρ1,n = ρ2,n = ρ in (T1∩K)\U for all sufficiently large

n.

(3) Assumptions on the potential terms: {WT1,n}∞n=1 is a sequence

of real valued radially symmetric potentials on T1, for which there ex-

ists a positive constant CW such that |WT1,n|L∞(T1) ≤ CW . Moreover,

{WT1,n}∞n=1 converges almost surely (and hence in L1
ρ,loc(T1)) to a po-

tential W , which satisfies |W |L∞(T1) ≤ CW . Without loss of generality,

we assume that WT1,n > 1 for all n ∈ N.

Under Assumptions 5.1, we show that the eigenvalues of the operators An

converge, as n → ∞, to the eigenvalues of the limit operator A. Here the

operators An are defined by the quadratic forms on H1
0 (T1) ×H1

0 (T1):

(5.1) 〈Anu, φ〉n :=

∫

T1

(u′φ̄′ρ1,n +WT1,nuφ̄ ρ2,n) dt,

while the limit operator A is defined, similarly, by

(5.2) 〈Au, φ〉 :=

∫

T1

(u′φ̄′ +Wuφ̄)ρ dt.

This result is stated in Corollary 5.4. Notice that since ρ is constant on each

edge, the difference between the derivatives part of A and the Laplacian is

manifested by the Kirchhoff condition.

In order to prove the convergence of the spectrum, we need the following

lemmas, whose proofs are given later.

Lemma 5.2: For n ∈ N, consider operators An of the form (5.1) which satisfy

Assumptions 5.1. Let {un} ⊂ H1
0,ρ(T1) be a sequence of normalized eigenfunc-

tions of An which converges weakly in H1
0,ρ(T1) to u. Let λn be the sequence

of corresponding eigenvalues of An. If limn→∞ λn = λ, then Au = λu, and

u 6= 0 is an eigenfunction of the operator A defined in (5.2) with eigenvalue λ.

Moreover, {un} also converges locally uniformly to u.



308 Y. PINCHOVER, G. WOLANSKY AND D. ZELIG Isr. J. Math.

Lemma 5.3: Consider operators A, and An for n ∈ N, of the form (5.1) and

(5.2) respectively which satisfy Assumptions 5.1. Assume also that

A−1
n : L2

ρ(T1) → H1
0,ρ(T1)

have uniform bounded norms. Suppose that u 6= 0, and Au = λu in L2
ρ(T1). For

each n ∈ N, let wn be the solution of the equation Anwn = λu in L2
ρ(T1). Then

{wn} has subsequence that we continue denoting by {wn}, which converges to

u weakly in H1
0,ρ(T1) and strongly in L2

ρ(T1). Moreover, {wn} also converges

locally uniformly to u.

Theorem 5.4: Let {ρ1,n}∞n=1, {ρ2,n}∞n=1 and {WT1,n}∞n=1 be sequences of

weight functions and potentials on T1 satisfying Assumptions 5.1. Assume,

in addition, that {WT1,n}∞n=1 are continuous functions and that {ρ1,n}∞n=1 and

{ρ2,n}∞n=1 equal ρ except, at most, for O(|ej |/n) neighborhoods of vertices in

generation j. Let a sequence of operators An and a limit operator A be defined

by (5.1) and (5.2) respectively. We denote by λm,n the m-th eigenvalue of An,

and by λm the m-th eigenvalue of A. Then

lim
n→∞

λm,n = λm.

Proof. We adapt Attouch’s proof of [2, Theorem 3.71]. Since ρ1,n ≍ ρ and

ρ2,n ≍ ρ with a positive constant c, and |WT1,n| and |W | are bounded by CW ,

we have for all u 6= 0 that the Rayleigh quotients satisfy

(5.3)

Rn(u) :=
〈Anu, u〉n
〈u, u〉n

=

∫
T1

(|u′|2ρ1,n +WT1,n|u|2ρ2,n) dθ
∫

T1
|u|2ρ2,n dθ

≤ c2
〈Au, u〉
〈u, u〉ρ

+ 2c2CW ,

and similarly

〈Anu, u〉n
〈u, u〉n

≥ 1

c2
〈Au, u〉
〈u, u〉ρ

− 2
1

c2
CW .

Fix l ∈ N, by the min-max principle we obtain

(5.4)
1

c2
(λl − 2CW ) ≤ λl,n ≤ c2(λl + 2CW ),

so, {λl,n} is a bounded sequence. Therefore, there exists a subsequence of {λl,n}
(that we keep denoting by {λl,n}), and λ̂l ∈ R such that λl,n → λ̂l.

We claim that there exists an eigenfunction ûl such that Aûl = λ̂lûl, i.e.,

{λ̂l} ⊆ {λj}. Indeed, let {ul,n} be the orthonormal sequence of eigenfunctions
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of An that correspond to {λl,n}. We assume that ‖ul,n‖n = 1. Then
∫

T1

| (ul,n)
′

|2ρ1,n dθ =

∫

T1

(λl,n −WT1,n)|ul,n|2ρ2,n dθ ≤ λl,n + CW .

It follows that {ul,n} is bounded in H1
0,ρ. The weak sequential compactness im-

plies that {ul,n} has a subsequence {ul,n} which converges weakly in H1
0,ρ(T1).

We denote its limit by ûl. By Lemma 5.2, ûl 6= 0, Aûl = λ̂lûl and the conver-

gence is locally uniform. In particular, {λ̂l} ⊆ {λj}. Moreover, (5.4) implies

that {λ̂l} is an infinite sequence, and since {λ̂l} ⊆ {λj}, we have liml→∞ λ̂l = ∞.

Let us now show that {λj} ⊆ {λ̂l}. Assume that there exists an eigenvalue λ

of A such that λ 6= λ̂l for all l ∈ N, and let u be a corresponding eigenfunction

of A such that ‖u‖L2
ρ

= 1.

Take m ∈ N such that λ < λ̂m+1 for all limit values λ̂m+1 of the sequence

{λm+1,n}. Set Um,n = span{u1,n, . . . , um,n}. By the min-max principle,

λm+1,n = min
v∈U⊥

m,n

Rn(v),

where Rn is defined in (5.3). Therefore, if we could find vn ∈ U⊥
m,n satisfying

lim
n→∞

Rn(vn) ≤ λ,

then we would arrive to a contradiction of the assumption λ < λ̂m+1.

Let wn be the solutions of the problem Anwn = λu. The assumption

WT1,n > 1 implies that A−1
n are uniformly bounded, so {wn} is a bounded se-

quence in L2
ρ(T1). By Lemma 5.3, up to a subsequence, {wn} converges to u,

weakly in H1
0,ρ(T1), strongly in L2

ρ(T1), and also locally uniformly.

Let us show that limn→∞Rn(wn) = λ :

(5.5) 〈Anwn, wn〉n = λ〈u,wn〉n = λ

∫

T1

[uwn(ρ2,n − ρ) + u(wn − u)ρ] dt+ λ.

Since
∣∣∣∣
∫

T1

uwn(ρ2,n − ρ) dt

∣∣∣∣
2

=

∣∣∣∣
∫

T1

uwnρ
(ρ2,n − ρ)

ρ
dt

∣∣∣∣
2

≤
∥∥∥∥u

(ρ2,n − ρ

ρ

)∥∥∥∥
2

L2
ρ

‖wn‖2
L2

ρ
,

Lebesgue’s dominated convergence theorem implies that the first term of the

right-hand side of (5.5) converges to zero, while the second term tends to zero

due to the L2
ρ(T1) convergence of {wn} to u. Therefore,

(5.6) lim
n→∞

〈Anwn, wn〉n = λ.
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Moreover,

(5.7) 〈wn, wn〉n =

∫

T1

[
(|wn|2 − |u|2)ρ2,n + |u|2(ρ2,n − ρ) + |u|2ρ

]
dt.

The first terms in (5.7) converges to zero due to the strong convergence of wn

to u in L2
ρ(T1). Indeed,

∣∣∣∣
∫

T1

(
|wn|2 − |u|2

)
ρ2,n dt

∣∣∣∣ ≤ ‖wn − u‖L2
ρn

‖wn + u‖L2
ρn

≤ C ‖wn − u‖L2
ρ
‖wn + u‖L2

ρ
.

The second term in (5.7) converges to zero by Lebesgue’s dominated convergence

theorem. Hence, (5.6) and (5.7) imply that

(5.8) lim
n→∞

Rn(wn) = λ.

Define

vn := wn −
m∑

k=1

〈wn, uk,n〉nuk,n.

Fix 1 ≤ k ≤ m, and let ûk be a weak limit of uk,n. It follows (as above) that

(5.9) lim
n→∞

〈wn, uk,n〉n = lim
n→∞

〈wn, uk,n〉ρ = 〈u, ûk〉ρ.

By the first part of the proof, ûk is an eigenfunction ofA, and by our assumption,

its eigenvalue is not equal to λ. Therefore, 〈u, ûk〉n = 0 and by (5.9),

(5.10) lim
n→∞

〈wn, uk,n〉n = 0.

That implies that {vn} and {wn} share the same L2-limit u.

Using (5.6) and (5.10), a direct calculation yields that

lim
n→∞

〈Anvn, vn〉n = λ and lim
n→∞

〈vn, vn〉n = 1.

Hence

lim
n→∞

Rn(vn) = lim
n→∞

Rn(wn) = λ.

By the definition of vn, we have 〈vn, uk,n〉Ln
n

= 0 for all k = 1, . . . ,m. Hence,

the min-max principle implies that Rn(vn) ≥ λm+1,n. Therefore, λ ≥ λ̂m+1 for

some limit value λ̂m+1, which contradicts the assumption λ < min{λ̂m+1}.

Remark 5.5: Let {un}∞n=1 ⊆ H1
0,ρ(T1) ∩ C1(T1) be a sequence which converges

weakly to u in H1
0,ρ(T1). It follows that {un} is locally a bounded and equicon-

tinuous sequence in C(T1). By Arzelà–Ascoli’s theorem, {un}∞n=1 has a subse-

quence that converges locally uniformly to a continuous function u.
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Proof of Lemma 5.2. By Remark 5.5, {un} has a subsequence which we con-

tinue denoting by {un}, that converges locally uniformly to u which is contin-

uous on T1. We claim: (1) u ∈ Dom(A), (2) Au = λu and (3) u 6= 0. The first

two claims follow provided we prove

(5.11)

∫

T1

(u′φ′ +Wuφ)ρ dθ = λ

∫

T1

uφρ dθ ∀φ ∈ C1
0 (T1).

Since {un} are eigenfunctions of An, for each test function φ ∈ C1
0 (T1),

(5.12)

∫

T1

(u′nφ′ρ1,n +WT1,nunφρ2,n) dθ =

∫

T1

λnunφρ2,n dθ.

By Lebesgue’s theorem applied to ρ1,n and the H1
0,ρ bound of un,

(5.13)

lim
n→∞

∣∣∣∣
∫

T1

u′nφ′(ρ− ρ1,n) dθ

∣∣∣∣
2

≤ lim
n→∞

∫

T1

|φ′|2 (ρ− ρ1,n)2

ρ
dθ

∫

T1

|u′n|2ρ dθ = 0.

The weak convergence of {un} to u in H1
0,ρ(T1) implies that

(5.14) lim
n→∞

∫

T1

u′nφ′ρ dθ =

∫

T1

u′φ′ρ dθ.

By similar arguments, the local uniform convergence of {un} to u, and the

almost sure convergence of WT1,n and ρ2,n, it follows that

(5.15)

lim
n→∞

λn

∫

T1

unφρ2,n dθ = λ

∫

T1

uφρ dθ, and

lim
n→∞

∫

T1

WT1,nunφρ2,n dθ =

∫

T1

Wuφρ dθ.

Now, (5.12)–(5.15) imply (5.11).

In order to show that u 6= 0, let T1,k = {e ∈ T1 : gen(e) ≤ k}, and let R(k) be

the maximal radius of subtrees in T1\T1,k. Recall that {un} are eigenfunctions

satisfying ‖un‖H1

0,ρ(T1) = 1, the corresponding eigenvalues sequence {λn} con-

verges, the potential terms {Wn} are bounded by a constant CW for all n ∈ N,

and ρ1,n ≍ ρ ≍ ρ2,n. Therefore, using (5.13) and the arguments that eigenfunc-

tions has L2
ρ(T1) and H1

ρ(T1) norms of the same order, we infer that there exist

γ, δ > 0 so that, for n large enough, ‖un‖L2
ρ(T1) ≥ γ > 0 and ‖u′n‖L2

ρ(T1) ≤ δ.
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Therefore, by Lemma 4.12 (1) we have that
∫

T1,k

|un|2ρ dθ =

∫

T1

|un|2ρ dθ −
∫

T1\T1,k

|un|2ρ dθ

≥
∫

T1

|un|2ρ dθ − c2

C
R(k)2

∫

T1

|u′n|2ρ dθ

≥ γ − δ
c2

C
R(k)2.

Now, choose k large enough such that γ−δ[cR(k)]2/C > 0. By the local uniform

convergence of un to u, we obtain

0 < γ − δ
c2

C
R(k) ≤ lim

n→∞

∫

T1,k

|un|2ρdθ =

∫

T1,k

|u|2ρdθ ≤
∫

T1

|u|2ρdθ.

Therefore, u 6= 0, and u is an eigenfunction of A.

Proof of Lemma 5.3. Since Au = λu and A is invertible, it is sufficient to prove

that Aw = Av (and in particular that w is in the domain of A). But this is

equivalent to

(5.16) 〈Aw, φ〉 = 〈Au, φ〉

for any function φ in a dense subset of H1
0,ρ(T1). Recall that w ∈ H1

0,ρ(T1) and

〈Aw, φ〉 is defined by (5.2). Let us split the quadratic form (5.2) into

〈Aw, φ〉 = 〈Aw, φ〉(1) + 〈Aw, φ〉(2) ,

where

(5.17) 〈Aw, φ〉(1) :=

∫

T1

w′φ̄′ρ dt, 〈Aw, φ〉(2) :=

∫

T1

Wwφ̄ρ dt.

Similarly, (5.1) is written as

〈Anw, φ〉n = 〈Anw, φ〉(1)n + 〈Anw, φ〉(2)n ,

where

(5.18) 〈Anw, φ〉(1)n :=

∫

T1

w′φ̄′ρ1,n dt, 〈Aw, φ〉(2)n :=

∫

T1

Wwφ̄ρ2,n dt.

Let Φ(T1) be the set of all functions φ ∈ C2
0 (T1) which are constant in some

neighborhood of any vertex v ∈ T1.

We further observe
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(1) For any φ ∈ Φ(T1) and sufficiently large n, φ
′

= 0 whenever ρ1,n 6= ρ or

ρ2,n 6= ρ by Assumption 5.1 (2). Hence, for a given φ ∈ Φ(T1)

〈Anwn, φ〉(1)n = 〈Awn, φ〉(1),

for all sufficiently large n.

(2) Since w is the weak limit of wn in H1
0,ρ(T1) it follows by (1) that

lim
n→∞

〈Anwn, φ〉(1)n = lim
n→∞

〈Awn, φ〉(1) = 〈Aw, φ〉(1).

(3) By Assumptions 5.1 and the strong convergence of wn to w in L2
ρ(T1)

we obtain

lim
n→∞

〈Anwn, φ〉(2)n = 〈Aw, φ〉(2).

(4) By (2) and (3) we obtain

lim
n→∞

〈Anwn, φ〉n = 〈Aw, φ〉,

for any φ ∈ Φ(T1).

(5) Since Anwn = λu = Au by assumption we obtain

〈Anwn, φ〉n = λ〈u, φ〉n = 〈Au, φ〉n.

Since ρn,1 → ρ in measure, it follows that

〈Aw, φ〉 = lim
n→∞

〈Anwn, φ〉n = λ〈u, φ〉ρ = 〈Au, φ〉.

So, (5.16) is proved for any φ ∈ Φ(T1). The proof is completed by observing

that Φ(T1) is clearly dense in H1
0,ρ(T1).

6. ε-dependent bounds for the eigenvalues of N-dimensional tree

In this section we consider the spectrum of the Schrödinger operator

Lε := −∆ +WT ε
N

on T ε
N , where N is dimension of the tree, and WT ε

N
is a continuous bounded

potential on T ε
N . Without loss of generality, we assume that WT ε

N
≥ 0.

We prove that the eigenvalues of Lε are bounded from above and below by

functions φε
Q, φ

ε
P of the eigenvalues of weighted operators Aε on T1 of the form

(6.1) Aε := − 1

ρb,ε

d

dθ

(
ρa,ε

d

dθ

)
+WT1,ε ,
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for a suitable choice of weight functions ρa,ε, ρb,ε and a potential WT1,ε on T1

of the form

(6.2) WT1,ε(θ) :=






∫
Ωε

e
WT ε

N
(θ,s) ds

|Ωε
e| θ ∈ E

ε
(e),

∑
e∈N (v) beψ(e)(θ) θ ∈ V

ε
(v),

where be = (|Ωε
e|)−1

∫
Ωε

e
WT ε

N
(pε

e, s) ds, pε
e = ∂V

ε
(v) ∩ e is the end point of

V
ε
(v) corresponding to e ∈ N (v), and {ψ(e)} is the partition of unity in a

neighborhood of the vertex v defined in Section 3. The functions φε
Q and φε

P

converge to the identity function as ε tends to zero.

6.1. Rayleigh quotients of Schrödinger operator on T1 and T ε
N . The

comparison between the Rayleigh quotients on T1 and T ε
N involves the con-

struction of transformations Qε : H1
0,ρ∗(T1) → H1

0 (T ε
N ) and P ε : H1

0 (T ε
N ) →

H1
0,ρ∗(T1), where ρ∗ : T1 → R is defined by ρ∗(θ) := δ

(N−1)
e |Ωe| for θ ∈ e. We

devote the following two subsections for the definitions of these transformations

and their properties.

6.1.1. The mapping Qε : H1
0,ρ∗(T1) → H1

0 (T ε
N ). Given a function f ∈ H1

0,ρ∗(T1)

and a vertex v, we denote by fε
e = f(pε

e) and ~fε = {fε
e }e∈N (v). Q

ε(f) is defined

as follows:

(6.3) Qε(f)(x) =





f(θ) x = (θ, s) ∈ Eε,
∑

e∈N (v) f
ε
eφ

ε
(e) x ∈ V ε(v),

where {φε
(e)} is a partition of unity of V ε(v) as defined in Section 3. We denote

Q(f) := Q1(f). We also define

(6.4) ρε
Q(θ) =




ρ∗ θ ∈ E

ε
(e),

max
{

αA

βA
, αB

βB

}
ρ∗ θ ∈ V

ε
(v),

where αA, βA, αB and βB are defined in Section 3 and Lemma 3.1.

Lemma 6.1: There exists c > 0 such that for any f ∈ H1
0,ρ∗(T1) and 0 < ε < 1,

we have

(1) Qε(f) ∈ L2(T ε
N).

(2)
∫

T ε
N

|∇Qε(f)|2 dx ≤ ε(N−1)
∫

T1

|f ′ |2ρε
Q dθ . Moreover,Qε(f) ∈ H1

0 (T ε
N ).

(3)
∫

T ε
N

|Qε(f)|2 dx ≥ ε(N−1)
∫

T1
(|f |2 − cε|f ′|2)ρ∗ dθ.

(4)
∫

T ε
N

WT ε
N
|Qε(f)|2 dx ≤ ε(N−1)

∫
T1

(WT1,ε|f |2 +O(ε)|f ′ |2)ρ∗ dθ.
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Proof. (1) We denote a normalized connector V := (εδ)−1V
ε
(v), where

δ = δv = δgen(v) corresponds to the vertex v in question, and

(6.5) f̂(θ) := f
( θ

εδ

)
, ρ̂∗(θ) := ρ∗

( θ

εδ

)

are the representation of f and ρ∗ in V (here θ = 0 corresponds to v).
∫

Eε

|Qε(f)|2 dx =

∫

E
ε

∫

Ωε

|f(θ)|2dsdθ =

∫

E
ε
(εδ)(N−1)|Ωε‖f |2 dθ

= ε(N−1)

∫

E
ε
|f |2ρ∗ dθ.

For the connector V ε, we have by Lemma 3.1 that
∫

V ε

|Qε(f)|2 dx = (εδ)N

∫

V

|Q(f)|2 dx ≤ (εδ)NαB|~f |2.

By Lemma 3.3 and since δ < 1, we have that

(εδ)NαB |~f |2 ≤ (εδ)NαB

δ(N−1)βB

∫

V

(|f̂ ′|2 + |f̂ |2)ρ̂∗ dθ

≤ ε(N−1)αB

βB

∫

V
ε
(|εf ′|2 + |f |2)ρ∗ dθ.

In particular, we proved

(6.6) ‖Qε(f)‖2
L2(T ε

N
) ≤ ε(N+1)‖f ′‖2

L2

ρε
Q

(T1) + ε(N−1)‖f‖2
L2

ρε
Q

(T1)
.

(2)
∫

Eε

|∇Qε(f)|2 dx =

∫

Eε

|f ′ |2 dx =

∫

E
ε

∫

Ωε

|f ′ |2dsdθ = ε(N−1)

∫

E
ε
|f ′ |2ρ∗ dθ.

For V ε we use similar considerations to those used in part 1:
∫

V ε

|∇Qε(f)|2 dx = (εδ)(N−2)

∫

V

|∇Q(f)|2 dx = (εδ)(N−2) ~fA~f∗

≤ (εδ)(N−2)αA|~fx~1|2

≤ (εδ)(N−2)

δ(N−1)

αA

βA

∫

V

|f̂ ′|2ρ∗ dθ

= ε(N−1)α
A

βA

∫

V
ε
|f ′|2ρ∗ dθ.

So, Qε(f) ∈ H1
0 (T ε

N ) by definition (6.4).
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(3) By Lemma 4.12,

∫

T ε
N

|Qε(f)|2 dx ≥
∫

T ε
N
\⋃

v V ε(v)

|Qε(f)|2 dx = ε(N−1)

∫
⋃

e E(e)

|f |2ρ∗ dθ

= ε(N−1)

∫

T1

|f |2ρ∗ dθ − ε(N−1)

∫
⋃

v V
ε
(v)

|f |2ρ∗ dθ

≥ ε(N−1)

∫

T1

|f |2ρ∗ dθ − cεN

∫

T1

|f ′|2ρ∗ dθ.

The proof of (4) is a simple extension of (6.6).

Corollary 6.2: There exists a constant c > 0 such that for all f ∈ H1
0,ρ∗(T1)

and 0 < ε sufficiently small, the Rayleigh quotients

RH1

0
(T ε

N )[Q
εf ] :=

∫
T ε

N

(|∇(Qεf)|2 +WT ε
N
|Qε(f)|2) dx

∫
T ε

N

|Qεf |2 dx
,

and

RH1

0,ρ∗ (T1)[f ] :=

∫
T1

(|fθ|2ρε
Q +WT1,ε|f |2ρ∗) dθ

∫
T1

|f |2ρ∗ dθ

satisfy the inequality

(6.7) RH1

0
(T ε

N
)[Q

εf ] ≤
(1 +O(ε))RH1

0,ρ∗ (T1)[f ]

1 − cεRH1

0,ρ∗ (T1)[f ]
.

Remark 6.3: Notice that RH1

0,ρ∗ (T1)[f ] depends on ε and is the Rayleigh quotient

of the width-weighted operator Aε defined in (6.1), substituting ρα,ε = ρε
Q and

ρb,ε = ρ∗.

6.1.2. The mapping P ε : H1
0 (T ε

N ) → H1
0,ρ∗(T1). Given a function u ∈ H1

0 (T ε
N ),

a vertex v and edges e ∈ N (v), we denote

ue :=
1

|Ωε
e|

∫

Ωε
e

u(pε
e, s) ds, ~u = ~uv := {ue}e∈V (v) ,

where pε
e = ∂V

ε
(v) ∩ e are the end points of V

ε
(v). Define

(6.8) P ε(u)(θ) :=





∫
Ωε u(θ,s)ds

|Ωε| θ ∈ E
ε
,

∑
e∈V (v) ueψ

ε
(e)(θ) θ ∈ V

ε
,
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where {ψ(e)} is the partition of unity in a neighborhood of the vertex v defined

in Section 3. We also define

(6.9) ρε
P (θ) :=




ρ∗ θ ∈ E

ε
,

min
{

βA

αA
, βB

αB

}
ρ∗ θ ∈ V

ε
.

Lemma 6.4: There exists c > 0 such that for any u ∈ H1
0 (T ε

N ) and 0 < ε

sufficiently small, we have

(1) P ε(u) ∈ L2
ρ∗(T1).

(2) ε(N−1)
∫

T1

|(P εu)
′ |2ρε

P dθ ≤
∫

T ε
N

|∇u|2 dx. In particular, P ε(u) ∈
H1

0,ρ∗(T1).

(3) ε(N−1)
∫

T1
|P εu|2ρ∗ dθ ≥

∫
T ε

N

[(1 −√
ε)|u|2 − cε|∇u|2] dx.

(4) ε(N−1)
∫

T1
WT1,ε|P εu|2ρ∗ dθ ≤

∫
T ε

N

(1 + 2
√
ε)(WT ε

N
|u|2 +O(ε)|∇u|2) dx.

Proof. Throughout the proof we denote û(x) = u (δεx) for x ∈ V , where δ =

δv = δgen(v) corresponds to the vertex v ∈ V (so, εδx ∈ V ε). Similarly, ũ(θ, s) =

u (θ, εδs) for (θ, s) ∈ E × Ω (so, (θ, εδs) ∈ Eε).

(1) For each edge Eε,

ε(N−1)

∫

E
ε
|P εu|2ρ∗ dθ =

∫

E
ε
|Ωε‖P εu|2 dθ =

∫

E
ε
|Ωε|

∣∣∣∣
1

|Ωε|

∫

Ωε

u(θ, s)ds

∣∣∣∣
2

dθ

≤
∫

E
ε

∫

Ωε

|u(θ, s)|2dsdθ =

∫

Eε

|u(θ, s)|2dx.

Using Lemma 3.1, we obtain for the connector V ε

ε(N−1)

∫

V
ε
|P εu|2ρ∗ dθ = εNδ

∑

e,ẽ∈N (v)

ueuẽ

∫

V

ψ(e)ψ(ẽ)ρ
∗ dθ

= εNδ~uB(~u)∗ ≤ (εδ)NαB|~u|2.
By Lemma 3.5, and assuming δ < 1, we obtain

(εδ)NαB |~u|2 ≤ (εδ)N αB

βB

∫

V

(|∇û|2 + |û|2) dx ≤ αB

βB

∫

V ε

(|ε∇u|2 + |u|2) dx.

(2) For an edge Eε we have

(6.10)

ε(N−1)

∫

E
ε

∣∣∣(P εu)
′
∣∣∣
2

ρ∗ dθ = ε(N−1)

∫

E
ε

∣∣∣∣
1

|Ωε|

∫

Ωε

∂u(θ, s)

∂θ
ds

∣∣∣∣
2

ρ∗dθ

=

∫

E
ε
|Ωε|−1

(∫

Ωε

∂u(θ, s)

∂θ
ds

)2

dθ ≤
∫

Eε

|∇u|2 dx.
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For V ε, we have by Lemma 3.1 and (6.8)

(6.11)

ε(N−1)

∫

V
ε

∣∣∣(P εu)
′
∣∣∣
2

ρ∗ dθ = ε(N−1)
∑

e,ẽ∈N (v)

ueu ˜(e)

∫

V
ε
(ψε

(e))
′(ψε

˜(e)
)′ρ∗ dθ

= ε(N−2)δ−1~uA(~u)∗ ≤ (εδ)(N−2)αA|~ux~1|2

≤ (εδ)(N−2)α
A

βA

∫

V

|∇û|2 dx

=
αA

βA

∫

V ε

|∇u|2 dx.

(3) In the edges Eε, we use the same argument as in [22]. By the inequality

(6.12) (a+ b)2 ≥ (1 −√
ε)a2 − b2/

√
ε,

we have that

ε(N−1)

∫

E
ε
|P εu|2ρ∗ dθ

=

∫

Eε

|P εu|2 ds dθ =

∫

Eε

|u+ (P εu− u)|2 ds dθ

≥
∫

E
ε

∫

Ωε

[
(1 −√

ε)|u(θ, s)|2 − 1√
ε
|P εu− u(θ, s)|2

]
dsdθ

= ε(N−1)

∫

E
ε

∫

Ω

[
(1 −√

ε)|ũ(θ, s)|2 − 1√
ε
|P ũ− ũ(θ, s)|2

]
dsdθ.

Notice that for each θ we have that P ũ(θ) − ũ(θ, s) has average zero on Ω.

By Poincaré inequality in H1(Ω), there exists a constant D > 0 such that∫
Ω |P ũ− ũ|2 ds ≤ D

∫
Ω |∇ũ|2 ds and hence,

ε(N−1)

∫

E
ε
|P εu|2ρ∗dθ ≥ ε(N−1)

∫

E
ε

∫

Ω

[
(1 −√

ε)|ũ(θ, s)|2

− 1√
ε
D|∇ũ(θ, s)|2

]
dsdθ

=

∫

Eε

[
(1 −√

ε)|u|2 − ε3/2D|∇u|2
]

dx.

Therefore,
∫

⋃
e Eε(e)

[(1 −√
ε)|u|2 − ε3/2D|∇u|2] dx ≤ ε(N−1)

∫

T1

ρ∗|P εu|2 dθ.
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On the other hand, by Lemma 4.13,
∫

⋃
v V ε(v)

[(1 −√
ε)|u|2 − ε3/2D|∇u|2] dx ≤

∫
⋃

v V ε(v)

(1 −√
ε)|u|2 dx

≤ cε(1 −√
ε)

∫

T ε
N

|∇u|2 dx.

Summing the last two inequalities, we obtain the proof of part 3.

(4) Since

ε(N−1)

∫

E
ε
WT1,ε|P εu|2ρ∗ dθ =

∫

Eε

WT ε
N
|P εu|2 ds dθ,

it is sufficient to prove for the edges that
∫

Eε

WT ε
N
|P εu|2 ds dθ ≤

∫

Eε

(1 + 2
√
ε)WT ε

N
|u|2 +O(ε)|∇u|2) dx.

Using (6.12), we have that
∫

Eε

WT ε
N
|u|2 dx ≥ (1−√

ε)

∫

Eε

WT ε
N
|P εu|2 ds dθ− 1√

ε

∫

Eε

WT ε
N
|u−P εu|2 ds dθ.

Therefore, if 0 < ε < 1 is small enough so that 1 ≤ (1 −√
ε)(1 + 2

√
ε), then by

Poincaré inequality, there exists a constant D such that

(6.13)∫

Eε

WT ε
N
|P εu|2 ds dθ

≤ (1 + 2
√
ε)

{ ∫

Eε

WT ε
N
|u|2 dx +

1√
ε

∫

Eε

WT ε
N
|u− P εu|2

}
ds dθ

≤ (1+2
√
ε)

∫

Eε

WT ε
N
|u|2 dx + CW (1 + 2

√
ε)

1√
ε

∫

E
ε

∫

Ω

|ũ− P ũ|2(εδ)(N−1) ds dθ

≤ (1 + 2
√
ε)

∫

Eε

WT ε
N
|u|2 dx + CWD(1 + 2

√
ε)

(εδ)2√
ε

∫

Eε

|∇su|2 ds dθ

≤ (1 + 2
√
ε)

∫

Eε

WT ε
N
|u|2 dx +O(ε3/2)

∫

Eε

|∇u|2 dx.

For the connectors we obtain by Lemma 4.12 and part 2,

ε(N−1)

∫
⋃

v V
ε
(v)

WT1,ε|P εu|2ρ∗ dθ ≤ εNCW

∫

T1

∣∣∣(P εu)
′
∣∣∣
2

ρ∗ dθ

≤ εCW

∫

T ε
N

|∇u|2 dx

which, together with (6.13), yields the proof of part 4.
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Corollary 6.5: For all ε > 0 sufficiently small, there exists a constant c > 0

such that the Rayleigh quotients

RH1

0,ρ∗ (T1)[P
εu] :=

∫
T1

(
|(P εu)

′ |2ρε
P +WT1,ε|P εu|2ρ∗

)
dθ

∫
T1

|u|2ρ∗dθ ,

and

RH1

0
(T ε

N
)[u] :=

∫
T ε

N

(|∇u|2 +WT ε
N
|u|2)dx

∫
T ε

N

|u|2dx
satisfy

(6.14) RH1

0,ρ∗ (T1)[P
εu] ≤

[1 +O(
√
ε)]RH1

0
(T ε

N )[u]

1 −√
ε− cεRH1

0
(T ε

N
)[u]

∀u ∈ H1
0 (T ε

N ).

Remark 6.6: Notice that RH1

0,ρ∗ (T1)[P
εu] is the Rayleigh quotient of the width-

weighted operator Aε defined in (6.1), substituting ρα,ε = ρε
P and ρb,ε = ρ∗.

6.2. T1-based estimates for the spectrum on T ε
N . Rubinstein and Schatz-

man have proved the following general lemma [22].

Lemma 6.7: Let Aj be bounded below, self adjoint operators defined on Hilbert

spaces Hj , where j = 0, 1, and let {λm(Aj)} be the nondecreasing sequence

of the corresponding eigenvalues. Denote by Dj the domain of the maximal

quadratic form associated with Aj and by Rj the Rayleigh quotient associated

with Aj . Suppose that there exists a continuous linear operator S mapping D1

to D0 and an increasing function φ : R → R ∪ {+∞} such that exp(−φ) is

continuous, and

R0(Su) ≤ φ(R1(u)) ∀u ∈ D1 \ ker(S).

Assume that for a given m,

(6.15) µ := inf{R1(v) : v ∈ D1 ∩ ker(S), v 6= 0} > λm(A1).

Then

(6.16) λm(A0) ≤ φ(λm(A1)).

Using Lemma 6.7, we obtain bounds for the eigenvalues of T ε
N . Let νε

m denotes

the m-th eigenvalue of the Schrödinger operator

Lε := −∆ +WT ε
N
.
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Denote the operators

Aε
Q := − 1

ρ∗
d

dθ

(
ρε

Q

d

dθ

)
+WT1,ε , Aε

P := − 1

ρ∗
d

dθ

(
ρε

P

d

dθ

)
+WT1,ε ,

and let µε
m (resp., λε

m) be the m-th eigenvalue of Aε
Q (resp., Aε

P ). We will omit

the superscript ε in νε
m, µε

m, and λε
m whenever there is no danger of confusion.

Theorem 6.8: Using the notations above, for all M ∈ N there exist εM > 0

and a constant c > 0 such that for all m ≤M and 0 < ε < εM , we have

(6.17) νε
m ≤ φε

Q(µε
m)

and

(6.18) λε
m ≤ φε

P (νε
m),

where

φε
Q(x) :=





(1+cε)x
1−cεx x < (cε)−1,

+∞ otherwise,
and φε

P (x) :=





(1+cε)x
1−√

ε−cεx
x <

1 −√
ε

cε
,

+∞ otherwise.

Proof of Theorem 6.8. Without loss of generality, we assume that WT1
is posi-

tive. In order to prove (6.17), we wish to apply Lemma 6.7 on S = Qε, D0 =

H1
0 (T ε

N ), D1 = H1
0,ρ∗(T1), A0 = Lε, A1 = Aε

Q , R0 = RH1

0
(T ε

N ), and R1 =

RH1

0,ρ∗ (T1). We, therefore, show that there exists C > 0 such that for any ε > 0

(6.19) inf
{
RH1

0,ρ∗ (T1)[f ] : f ∈ kerQε, f 6= 0
}
≥ 1/(Cε2) .

Indeed,

kerQε =

{
f ∈ H1

0,ρ∗(T1) : f(θ) = 0 ∀θ ∈ T1\
⋃

v

V
ε
}
.

Therefore, in order to estimate RH1

0,ρ∗ (T1)[f ] for f ∈ ker(Qε), we actually need

to estimate this quotient in each component V
ε ∩ e. However, we have that

|f(θ)|2 =

∣∣∣∣
∫ θ

pε

f
′

dϑ

∣∣∣∣
2

≤ |pε − θ|
∫ θ

pε

|f ′ |2dϑ,

where pε ∈ ∂V
ε
. Multiplying the above by ρ∗ (which, we recall, is constant on

each component V
ε ∩ e), we find the existence of C > 0 such that

∫

V
ε∩e

|f |2ρ∗dθ ≤
∫

V
ε∩e

(
|pε − θ|

∫ θ

pε

|f ′ |2ρ∗dϑ
)

dθ ≤ Cε2
∫

V ∩e

|f ′ |2ρ∗ dθ.
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Thus, (6.19) is verified provided ε is sufficiently large. Hence, (6.17) follows

from Corollary 6.2 and Lemma 6.7.

In order to prove (6.18), we wish to apply Lemma 6.7 to S = P ε, D0 =

H1
0,ρ∗(T1), D1 = H1

0 (T ε
N), A0 = Aε

P , A1 = Lε, R0 = RH1

0,ρ∗ (T1) and R1 =

RH1

0
(T ε

N ). To this end, we show that there exists C > 0 such that for any ε > 0

(6.20) inf{RH1

0
(T ε

N
)[u] : u ∈ kerP ε, u 6= 0} ≥ 1/(Cε).

We notice that if u ∈ kerP ε, then its averages on the cross sections Ωε
j of

Eε
j vanish. Therefore, using the (N − 1)-dimensional Poincaré inequality for

functions whose average is zero, we obtain that there is a constant D such that:

(6.21)

∫

Eε

|u|2 ds dθ ≤ Dε2(N−1)

∫

E
ε

∫

Ωε

|∇su|2 ds dθ

≤ Dε2(N−1)

∫

Eε

(|∇u|2 +WT ε
N
|u|2) ds dθ.

By Lemma 4.13, there exists C > 0 such that for any u ∈ H1
0 (T ε

N )

(6.22)

∫
⋃

v V ε(v)

|u|2 dx ≤ Cε

∫

T ε
N

(|∇u|2 +WT ε
N
|u|2) dx.

Therefore, (6.21) and (6.22) imply (6.20). Thus, (6.18) follows by Corollary 6.5

and Lemma 6.7.

Remark 6.9: Theorem 6.8 is similar to [22, Theorem 5] proved for a finite graph

with a constant-width thin domain.

Theorem 6.10: For each m ∈ N, the m-th eigenvalue of the Schrödinger op-

erator Lε on H1
0 (T ε

N ) converges as ε → 0 to the m-th eigenvalue of the limit

width-weighted operator A on H1
0 (T1).

Proof. We use in this proof the notation of Theorem 6.8. Notice that for small

enough ε, φε
Q and φε

P are continuous monotone increasing function, which satisfy

lim
ε→0

φε
Q(x) = x, lim

ε→0
φε

P (x) = x.

Moreover, since the operators we refer to in Theorem 6.8 satisfy the conditions

of Theorem 5.4, we have for each m ∈ N that both µε
m and λε

m (see (6.17) and

(6.18)) converge as ε → 0 to the m-th eigenvalue of the limit width-weighted

operator A. Since A has a discrete spectrum, the result follows.
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7. Convergence of eigenfunctions of Laplace operator on T ε
N

In [7, 8], Kosugi has proved that the solutions of ∆u+f(u) = 0 in thin network-

shaped bounded domains that satisfy Neumann boundary condition, converge to

solutions of appropriate equations on the skeleton of the domain. In [7], Kosugi

deals only with domains which are formed by joining straight tubes around some

graph, while in [8] the results are extended to general domains around graphs.

However, trees with infinite number of vertices and nonsmooth boundaries are

not considered in these papers. Using the transformation P ε developed for

Theorem 6.5, we give a simple proof for the convergence of projections into

H1
0,∗(T1) of eigenfunctions uε of the Laplace operator on H1

0 (T ε
N ). Specifically,

we show in Theorem 7.2 that P εuε converges to eigenfunctions of the following

limit width-weighted operator on T1

L∗u := (ρ∗)−1
(
ρ∗u

′
)′

.

First, we need to prove the following lemma.

Lemma 7.1: Assume that u ∈ H1
0 (T ε

N ) satisfies ‖u‖H1

0
(T ε

N ) = ε(N−1)/2.

Fix a vertex v, and denote by pe the ‘end point’ in V
ε∩Eε

(e). Then there is a

constant C which depends on v but is independent on ε such that for e, ẽ ∈ N (v)

we have

(7.1) |P εu(pe) − P εu(pẽ)| ≤ C
√

dist(pe, pẽ) ,

where dist(·, ·) is the standard distance function on T1.

Proof. Notice that since C1(T ε
N ) is dense inH1

0 (T ε
N), we may assume without

loss of generality that u ∈ C1(T ε
N ). Let q, r ∈ V

ε ∩ e. By (6.11),

|P εu(q) − P εu(r)|2 =

∣∣∣∣
∫ q

r

d

dθ
(P εu)dθ

∣∣∣∣
2

≤ dist(q, r)
1

ρ∗e

∫ q

r

∣∣∣∣
d

dθ
(P εu)

∣∣∣∣
2

ρ∗dθ

≤ dist(q, r)
ε1−N

ρ∗e

αA

βA

∫

V ε

|∇u|2dsdθ

≤ dist(q, r)
ε1−N

ρ∗e

αA

βA
εN−1 ≤ Cdist(q, r)

for some constant C. Therefore, |P εu(pe) − P εu(pẽ)| ≤ 2C
√

dist(pe, pẽ).

Theorem 7.2: Let uε ∈ H1
0 (T ε

N ) be an eigenfunction with eigenvalue λε of

the Laplace operator on T ε
N , such that ‖uε‖L2(T ε

N
) = ε(N−1)/2. Assume that
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limε→0 λε = λ∗. Then there exists an eigenfunction u∗ of L∗ which corresponds

to λ∗, such that up to a subsequence,

u∗ = lim
ε→0

P εuε

locally uniformly.

Proof. By elliptic regularity, uε ∈ C2(T ε
N ). Our proof consists of three steps.

Step 1: Let us show that P εuε converges to a solution u∗ of d2u
dθ2 = λ∗u on

each edge of e ∈ T1.

By parts 2 and 4 of Lemma 6.4 (with W = 1), we obtain that P εuε are

uniformly bounded in H∗,1(T1). This implies, in particular, that P εuε are

uniformly locally bounded in L∞(T1). In addition, (up to a subsequence)

limε→0 P
εuε = u∗ holds locally uniformly by Arzelà-Ascoli’s theorem. Fix an

edge e ∈ T1, and θ1, θ2 ∈ e. Let ζ(θ) ∈ C∞
0 ([θ1, θ2]). If ε > 0 is sufficiently

small, then θ1, θ2 ∈ E
ε
. Therefore,

∫ θ2

θ1

P εuε(θ)ζ
′′(θ)dθ =

∫ θ2

θ1

1

|Ωε|

(∫

Ωε

uε(θ, s)ds

)
ζ′′(θ) dθ

=
1

|Ωε|

∫

Ωε

∫ θ2

θ1

uε(θ, s)∆ζ(θ) dθ ds

= − 1

|Ωε|

∫

Ωε

∫ θ2

θ1

∇uε(θ, s) · ∇ζ(θ) dθ ds

= − λε

|Ωε|

∫

Ωε

∫ θ2

θ1

uε(θ, s)ζ(θ) dθ ds

= −λε

∫ θ2

θ1

P εuε(θ)ζ(θ) dθ.

Hence, P εuε ∈ H2([θ1, θ2]) and −(P εuε)
′′ = λεP

εuε in the weak sense and

by elliptic regularity also in the strong sense. Moreover P εuε is C∞ in E
ε
.

Since λε → λ∗ and P εuε → u∗ uniformly on e, the second derivatives (P εuε)
′′

converge uniformly to (u∗)′′, which also implies the same convergence for the

first derivatives (P εuε)
′.

Step 2: We show now that u∗ is in the domain of L∗. For this, we must only

show that u∗ satisfies the corresponding Kirchhoff’s conditions. The continuity

at the vertices is satisfied by Lemma 7.1. The second Kirchhoff condition is
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given by
∑

e∈N (v)

ρ∗eu
′
e(v) = 0,

where N (v) is the set of all edges adjacent to the vertex v. Recall that ρ∗e =

δ
(N−1)
e |Ωe| takes a constant value on each edge e.

Let U ⊂ T1 be a neighborhood of the vertex v which contains no other vertex,

and let θe ∈ ∂U be the point of ∂U contained in e ∈ N (v). Let Uε ⊂ T ε
N be

the inflation of U , that is, U = Uε ∩ T1. In particular, for sufficiently small ε

we have

∂Uε = (Uε ∩ ∂T ε
N )

⋃

e∈N (v)

Se ,

where Se = {s : (θe, s) ∈ Eε(e)}. Let ζε ∈ C∞(Uε) be a function which does

not depend on s in the edges, satisfies ζε(x) = 1 for all x ∈ V ε(v), 0 ≤ ζε(x) ≤ 1

for all x ∈ Uε, and vanishes around each Se. Since uε is an eigenfunction, we

have

λε

∫

Uε

uεζε dx =

∫

V ε(v)

∇uε · ∇ζε dx +

∫

Uε(v)\V ε(v)

∇uε · ∇ζε dx

=

∫

Uε(v)\V ε(v)

∂uε

∂θ

dζε
dθ

ds dθ.

As ζε depends only on θ on Uε(v)\V ε(v) and equals one at pe, we get

(7.2)

∫

Uε(v)\V ε(v)

∂uε

∂θ

dζε
dθ

dsdθ

=
∑

e∈N (v)

|Ωε
e|

∫ θe

pe

∂P εuε

∂θ

dζε
dθ

dθ

= −
∑

e∈N (v)

|Ωε
e|

[
∂P εuε

∂θ
(pe)ζε(pe) +

∫ θe

pe

(P εuε)
′′ζε dθ

]

= −
∑

e∈N (v)

|Ωε
e|

[
∂P εuε

∂θ
(pe) − λε

∫ θe

pe

P εuεζε dθ

]

= −
∑

e∈N (v)

|Ωε
e|
∂P εuε

∂θ
(pe) + λε

∫

Uε(v)\V ε(v)

uεζε dx.

The change of order of integration and differentiation in the first line of (7.2)

is easily justified by approximating uε with a smooth function. We therefore
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obtain that
∑

e∈N (v)

|Ωε
e|
∂P εuε

∂θ
(pe) = −λε

∫

V ε(v)

uεζε dx,

and since |V ε(v)| = cεN , we arrive at the estimate

∣∣∣∣
∑

e∈N (v)

ρ∗e
∂P εuε

∂θ
(pe)

∣∣∣∣ ≤cε1−NεN/2λε

( ∫

V ε(v)

u2
ε(x) dx

)1/2

(7.3)

=cλεε
1/2.

Letting ε→ 0, we obtain by Step 1 that the left hand side of (7.3) converges to

∣∣∣∣
∑

e∈N (v)

ρ∗e(u
∗
e)

′(v)

∣∣∣∣

and the right hand side to zero.

Step 3: It remains to prove that u∗ 6≡ 0. Let TN,j denote the j first generations

in TN . By Lemmas 6.4 and 4.12 there are constants c, C > 0 and a function

R(j) which tends to zero as j → ∞ such that

ε(N−1)

∫

T1,j

|P εuε|2ρ∗dθ = ε(N−1)

∫

T1

|P εuε|2ρ∗dθ − ε(N−1)

∫

T1\T1,j

|P εuε|2ρ∗dθ

≥ (1 −√
ε)ε(N−1) − cλεε

N − c2

C2
R(j)2λεε

(N−1)

= ε(N−1)
[
(1 −√

ε) − cλεε−
c2

C2
R(j)2λε

]
.

Choose ε > 0 small enough and j large enough so that

(1 −√
ε) − cλεε−

c2

C2
R(j)2λε ≥ γ

for a constant γ > 0. Then
∫

T1,j
|P εuε|2ρ∗dθ ≥ γ > 0. By the local uniform

convergence of P εuε to u∗ we have that

∫

T1

|u∗|2ρ∗ dθ ≥
∫

T1,j

|u∗|2ρ∗ dθ = lim
ε→0

∫

T1,j

|P εuε|2ρ∗ dθ ≥ γ > 0,

so, u∗ 6≡ 0.
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